548 research outputs found

    Design and operation of a prototype interaction point beam collision feedback system for the International Linear Collider

    Full text link
    A high-resolution, intratrain position feedback system has been developed to achieve and maintain collisions at the proposed future electron-positron International Linear Collider (ILC). A prototype has been commissioned and tested with a beam in the extraction line of the Accelerator Test Facility at the High Energy Accelerator Research Organization in Japan. It consists of a stripline beam position monitor (BPM) with analogue signal-processing electronics, a custom digital board to perform the feedback calculation, and a stripline kicker driven by a high-current amplifier. The closed-loop feedback latency is 148 ns. For a three-bunch train with 154 ns bunch spacing, the feedback system has been used to stabilize the third bunch to 450 nm. The kicker response is linear, and the feedback performance is maintained, over a correction range of over ±\pm60 {\mu}m. The propagation of the correction has been confirmed by using an independent stripline BPM located downstream of the feedback system. The system has been demonstrated to meet the BPM resolution, beam kick, and latency requirements for the ILC

    Phenomenological description of the gamma* p cross section at low Q2

    Full text link
    Low Q2 photon-proton cross sections are analysed using a simple, QCD-motivated parametrisation σγp1/(Q2+Q02)\sigma_{\gamma^\star p}\propto 1/(Q^2+Q_0^2), which gives a good description of the data. The Q2 dependence of the gamma* p cross section is discussed in terms of the partonic transverse momenta of the hadronic state the photon fluctuates into.Comment: 14 pages, revtex, epsfig, 2 figure

    EFFECT OF CSR SHIELDING IN THE COMPACT LINEAR COLLIDER

    Get PDF
    Abstract The Drive Beam complex of the Compact Linear Collider must use short bunches with a large charge making beam transport susceptible to unwanted effects of Coherent Synchrotron Radiation emitted in the dipole magnets. We present the effects of transporting the beam within a limited aperture which decreases the magnitude of the CSR wake. The effect, known as CSR shielding, eases the design of key components of the facility

    The AWAKE Run 2 Programme and beyond

    Get PDF
    Plasma wakefield acceleration is a promising technology to reduce the size of particle accelerators. The use of high energy protons to drive wakefields in plasma has been demonstrated during Run 1 of the AWAKE programme at CERN. Protons of energy 400 GeV drove wakefields that accelerated electrons to 2 GeV in under 10 m of plasma. The AWAKE collaboration is now embarking on Run 2 with the main aims to demonstrate stable accelerating gradients of 0.5–1 GV/m, preserve emittance of the electron bunches during acceleration and develop plasma sources scalable to 100s of metres and beyond. By the end of Run 2, the AWAKE scheme should be able to provide electron beams for particle physics experiments and several possible experiments have already been evaluated. This article summarises the programme of AWAKE Run 2 and how it will be achieved as well as the possible application of the AWAKE scheme to novel particle physics experiments.info:eu-repo/semantics/publishedVersio

    DEVELOPMENT OF A FAST MICRON-RESOLUTION BEAM POSITION MONITOR SIGNAL PROCESSOR FOR LINEAR COLLIDER BEAMBASED FEEDBACK SYSTEMS

    Get PDF
    We present the design of a prototype fast beam position monitor (BPM) signal processor for use in inter-bunch beam-based feedbacks for linear colliders and electron linacs. We describe the FONT4 intra-train beam-based digital position feedback system prototype deployed at the Accelerator test facility (ATF) extraction line at KEK, Japan. The system incorporates a fast analogue beam position monitor front-end signal processor, a digital feedback board, and a fast kicker-driver amplifier. The total feedback system latency is less than 150ns, of which less than 10ns is used for the BPM processor. We report preliminary results of beam tests using electron bunches separated by c. 150ns. Position resolution of order 1 micron was obtained

    BEAM TEST RESULTS WITH THE FONT4 ILC PROTOTYPE INTRA-TRAIN BEAM FEEDBACK SYSTEM

    Get PDF
    We present the design and beam test results of a prototype beam-based digital feedback system for the Interaction Point of the International Linear Collider. A custom analogue front-end processor, FPGA-based digital signal processing board, and kicker drive amplifier have been designed, built, and tested on the extraction line of the KEK Accelerator Test Facility (ATF). The system was measured to have a latency of approximately 140 ns

    Latest Beam Test Results of the FONT4 ILC Intra-train Feedback System Prototype

    Full text link
    We present the design and preliminary results of a prototype beam-based digital feedback system for the Interaction Point of the International Linear Collider. A custom analogue front-end processor, FPGA-based digital signal processing board, and kicker drive amplifier have been designed, built, and tested on the extraction line of the KEK Accelerator Test Facility (ATF). The system was measured to have a latency of approximately 140 ns.Comment: 4 pages, 6 figures, Proceedings of LCWS/ILC0

    Soft Contributions to Hard Pion Photoproduction

    Full text link
    Hard, or high transverse momentum, pion photoproduction can be a tool for probing the parton structure of the beam and target. We estimate the soft contributions to this process, with an eye toward delineating the region where perturbatively calculable processes dominate. Our soft process estimate is based on vector meson dominance and data based parameterizations of semiexclusive hadronic cross sections. We find that soft processes dominate in single pion photoproduction somewhat past 2 GeV transverse momentum at a few times 10 GeV incoming energy. The recent polarization asymmetry data is consistent with the perturbative asymmetry being diluted by polarization insensitive soft processes. Determining the polarized gluon distribution using hard pion photoproduction appears feasible with a few hundred GeV incoming energy (in the target rest frame).Comment: 6 pages, 5 figure

    Controlled growth of the self-modulation of a relativistic proton bunch in plasma

    Get PDF
    A long, narrow, relativistic charged particle bunch propagating in plasma is subject to the self-modulation (SM) instability. We show that SM of a proton bunch can be seeded by the wakefields driven by a preceding electron bunch. SM timing reproducibility and control are at the level of a small fraction of the modulation period. With this seeding method, we independently control the amplitude of the seed wakefields with the charge of the electron bunch and the growth rate of SM with the charge of the proton bunch. Seeding leads to larger growth of the wakefields than in the instability case.info:eu-repo/semantics/publishedVersio
    corecore